在某一个频点匹配很容易,但是双频以上就复杂点了。因为在 900M 完全匹配了,那么 1800 处就不会达到匹配,要算一个适合的匹配电路。最好用仿真软件或一个点匹配好了,在网络分析仪上 的 S11 参数下调整,因为双频的匹配点肯定离此处不会太远,只有两个元件匹配是唯一的,但是 pi 型网络匹配,就有无数个解了。这时候需要仿真来挑,最好有使用经验。天线生产厂家

 

 

仿真工具在实际过程中几乎没什么用处。因为仿真工具是不知道你元件的模型的。你必须要输入实际元件的模型,也就是说各种分布参数,你的结果才可能与实际相符。一个实际电感器并不是简单用电感量能衡量的,应该是一个等效网络来模拟。本人通常只会用仿真工具做一些理论的研究。

 

实际设计中,要充分明白 Smith 圆图的原理,然后用网络分析仪的圆图工具多调试。懂原理让你定性地知道要用什么件,多调是要让你熟悉你所用的元件会在实际的圆图上怎么移动。(由于分布参数及元件的频率响应特性的不同,实际件在圆图上的移动和你理论计算的移动会不同的)。

 

双频的匹配的确是一个折衷的过程。你加一个件一定是有目的性的。以 GSM、DCS 双频来说,你如果想调 GSM 而又不太想改变 DCS,你就应该选择串连电容、并联电感的方式。同样如果想调 DCS,你应该选择串电感、并电容。

 

理论上需要 2 各件调一个频点,所以实际的手机或者移动终端通常按如下规律安排匹配电路:对于简单一些的,天线空间比较大,反射本来就较小的,采用 Pai 型(2 并一串),如常规直板手机、常规翻盖机;稍微复杂些的采用双 L 型(2 串 2 并):对于更复杂的,采用 L+Pai 型(2 串 3 并),比如用拉杆天线的手机。

 

 

记住,匹配电路虽然能降低反射,但同时会引入损耗。有些情况,虽然驻波比好了,但天线系统的效率反而会降低。所以匹配电路的设计是有些忌讳的;比如在 GSM、DCS 手机中匹配电路中,串联电感一般不大于 5.6nH。还有,当天线的反射本身比较大,带宽不够,在 smith 图上看到各频带边界点离圆心的半径很大,一般加匹配是不能改善辐射的。

 

天线的反射指标(VSWR,return loss)在设计过程中一般只要作为参考。关键参数是传输性参数(如效率,增益等)。有人一味强调 return loss,一张口要-10dB,驻波比要小于 1.5,其实没有意义。我碰到这种人,我就开玩笑说,你只要反射指标好,我给你接一个 50 欧姆的匹配电阻好了,那样驻波小于 1.1 啊,至于你手机能不能工作我就不管了!

 

SWR 驻波比仅仅说明端口的匹配程度,即阻抗匹配程度。匹配好,SWR 小,天线输入端口处反射回去的功率小。匹配不好,反射回去的功率就大。至于进入天线的那部分功率是不是辐射了,你根本不清楚。天线的效率是辐射到空间的总功率与输入端口处的总功率之比。所以 SWR 好了,无法判断天线效率一定就高(拿一个 50ohm 的匹配电阻接上,SWR 很好的,但有辐射吗?)。但是 SWR 不好了,反射的功率大,可以肯定天线的效率一定不会高。SWR 好是天线效率好的必要条件而非充分条件。SWR 好并且辐射效率(radiation efficiency)高是天线效率高的充分必要条件。当 SWR 为理想值(1)时,端口理想匹配,此时天线效率就等于辐射效率。

 

当今的手机,天线的空间压缩得越来越小,是牺牲天线的性能作为代价的。对于某些多频天线,甚至 VSWR 达到了 6。以前大家比较多采用外置天线,平均效率在 50%算低的,现在 50%以上的效率就算很好了!看一看市场上的手机,即使是名公司的,如 Nokia 等,也有效率低于 20%的。有的手机(滑盖的啊,旋转的啊)甚至在某些频点的效率只有 10%左右。

 

 

见过几个手机内置天线的测试报告,天线效率基本都在 30-40%左右,当时觉得实在是够差的(比我设计的微带天线而言),现在看来还是凑合的了。不过实际工程中,好像都把由于 S11 造成的损耗和匹配电路的损耗计在效率当中了,按天线原理,只有介质损耗(包括基板引起的和手机内磁铁引起的)和金属损耗(尽管很小)是在天线损耗中的,而回损和匹配电路的损耗不应该记入的。不过工程就是工程啊,这样容易测试啊。

 

对了,再补充一句,软件仿真在一定程度上是对工程有帮助的。当然,仿真的结果准确程度没法跟测试相比,但是通过参数扫描仿真获取的天线性能随参数变化趋势还是有用的,这比通过测试获取数据要快不少,尤其是对某些不常用的参数。

 

“仿真工具在实际工程中没有什么用处”,是说在设计匹配电路时,更具体一点是指设计双频 GSM、DCS 手机天线匹配电路时。如果单独理解这句话,无疑是错的。事实上,我一直在用 HFSS 进行天线仿真,其结果也都是基于仿真结果的。

 

对了,焊元器件真的是一件费劲的事,而且也有方法的,所谓熟能生巧嘛。大的公司可能给你专门配焊接员,那样你可能就只要说焊什么就可以了。然而,我们在此讨论的是如何有效地完成匹配电路的设计。注意有效性!有效性包括所耗的时间以及选择元器件的准确性。如果没有实际动手的经验,只通过软件仿真得出一种匹配设计然而用到实际天线输入端,呵呵,我可以说,十有八九你的设计会不能用,甚至和你的想象大相径庭!

 

实际设计中,还有一种情况你在仿真中是无法考虑的(除非你事先测量)。那就是,分布参数对于 PIFA 的影响。由于如今天线高度越来越小,而匹配电路要么在天线的下方(里面)要么在其上方(外面),反正很近,加入一个实际元件在实际中会引入分布参数的改变。尤其如果电路板排版不好,这种效应会明显一些。实际焊接时,甚至如果一个件焊得不太好,重新焊接一下,都会带来阻抗的变化。

 

所以,PIFA 的设计中,通常我们不采用匹配电路(或者叫 0ohm 匹配)。这就要求你仔细调节优化你的天线。一般来说对现今的柔性电路板设计方案(Flexfilm)比较容易做到,因为修改辐射片比较容易。对于用得比较多的另一种设计方案冲压金属片(stamping metal),相对来说就比较难些了。一是硬度大,受工艺的限制不能充分理由所有空间,二是模具一旦成型要多次修改辐射片的设计也很困难。

 

在匹配设计上仿真工具有没有很大的用处,没多少人是可以用仿真工具算出匹配来的。再说,有没有很大效果怎么衡量呢? 工程上讲究的是快速,准确。为了仿真而仿真,没有实际意义。为了得到一个 2、3、最多 5 个件的匹配你去建立电感、电容的模型,不太值的。还有,你如何考虑上面我提到的 PIFA 匹配的分布参数的改变?前面我还说到一些匹配电路的忌讳,不是源于理论,完全源于实践。因为天线的设计是希望能提高它的辐射效率(总效率)!我没有成功地在 1 小时内通过仿真工具找到过准确的匹配电路(就说 GSM、DCS)双频的吧,(实际中用视错法是可以的)。

 

在处理 RF 系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VCO 输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。

 

在高频端,寄生元件(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的 RF 测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。

 

有很多种阻抗匹配的方法,包括计算机仿真: 由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。


手工计算: 这是一种极其繁琐的方法,因为需要用到较长(“几公里”)的计算公式、并且被处理的数据多为复数。


经验: 只有在 RF 领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。

双频的匹配的确是一个折衷的过程。你加一个件一定是有目的性的。以 GSM、DCS 双频来说,你如果想调 GSM 而又不太想改变 DCS,你就应该选择串连电容、并联电感的方式。同样如果想调 DCS,你应该选择串电感、并电容

天线与阻抗匹配调试方法

点击收藏